
WHY TESTING IS
IMPORTANT
Software testing has been an essential part of
software engineering as long as we have called it
by that name. Here we will discuss the history of it
and look at how we have evolved since.

3

CONTENTS

1
2

4
5

A BRIEF HISTORY OF SOFTWARE TESTING

85 MILLION LINES OF CODE

COMPLEXITY & RELIABILITY

THE PYRAMID

THE HUMAN EXPERIENCE

1
C H A P T E R

A BRIEF HISTORY OF SOFTWARE
TESTING

| 0 1

A BRIEF HISTORY OF
SOFTWARE TESTING

We have all encountered bugs in software during our lives, whether it be our desktops,
phones or smart devices from your car to your washing machine. The brief history of
computing and software is short in the grand scheme of technology, yet from the moment
software engineering as a term was coined, we were already acutely aware of the need for
testing within software.

The above occurred in 1968 at a NATO conference on software engineering that had many
leading computer science figures in participation. During this conference, both testing and
testing automation were discussed, and this was a time when hardware was still considered
more crucial to the machine than software.

| 0 2

https://www.scrummanager.net/files/nato1968e.pdf

In the software field, we tend to forget our past and have to re-invent the wheel far too
often. This is apparent in the concepts of testing that were already discussed in 1968 but
even to this day sometimes elude people:

| 0 3

A software system can best be designed if testing is interlaced with the designing
instead of being used after the design.

System testing should be automated as well. A collection of executable programs
should be produced and maintained to exercise all parts of the system.

The proper testing of large programming systems is virtually impossible; but with
sufficient resources, enough testing can be performed to allow a good evaluation to
be made.

Seemingly, quite minor changes may have a profound effect upon the operation of a
package.

“…if the users are convinced that if catastrophes occur the system will come up
again shortly, and if the responses of the system are quick enough to allow them to
recover from random errors quickly, then they are fairly comfortable with what is
essentially an unreliable system.”

SOURCE: NATO Software Engineering Conference, 1968

2
C H A P T E R

COMPLEXITY & RELIABILITY

| 0 4

Complexity has been shown to be linked to reliability.
Any attempt to test exhaustively, such a system is going to be very difficult. It is fair to
say it will be as intellectually challenging to test the complex software systems of the
future as it will be to design them initially.

In 1968 machines and software were far simpler compared to modern computers and smart
devices, yet even then it was noted:

This is truly the correct assessment as the complexity of our software has grown
exponentially. To illustrate this explosion of complexity, we can look at the lines of code in
software from the past to the modern age.

As the NATO conference took place in 1968, a good example of one of the most advanced
systems at the time would be the Apollo 11 moon mission. The computer system on board
Apollo 11 was constructed by using 40,202 lines of code.

After this milestone, we have rapidly exploded in the size of our applications measured by

COMPLEXITY &
RELIABILITY

| 0 5

lines of code, reaching 85
million lines of code at Mac OS
Tiger X in 2005. That is already
almost 20 years ago as of this
year.

It is said that Google for
instance is roughly 2 billion
lines of code!

3
C H A P T E R

85 MILLION LINES OF CODE

| 0 6

85 MILLION LINES OF
CODE

| 0 7

To grasp how much 85 million lines of code is we can imagine it as books.

An average book has 400 pages
On average there are 300 words per
page
Average sentence has 20 words
One page of a book is roughly 15 lines
One book is roughly 6,000 lines long

It would take ~1180 years to read the
code base at a book reading speed

If we convert this to match the 85 million
lines of code we get:

~14,167 books

An average adult reads 12 books a year

This is not the case, as the code base is
more of a hyperlink type of wiki page.

Which you have to absorb the whole content and jump in between to understand it, as it is
not a linear story from beginning to end. If you imagine this pile of books to read we can
compare it to the size of Empire State Building.

4
C H A P T E R

THE PYRAMID

| 0 8

THE
PYRAMID

| 0 9

Writing 14,167 books without typos, let alone writing 85 million lines of code, error free
without testing is practically impossible. Even with testing, finding all possible errors and

bugs is still practically impossible and this is due to
all of the added complexity that goes even deeper
than just the lines of code.

Considering the testing of such magnitude, we
instantly recognize that manually covering such a
vast area is not feasible unless you employ a large
company’s worth of testers to run through manual
testing every time something changes, and even
then this would be incredibly arduous.

Hence the need for automated testing in modern
software, where due to the complexity, it is crucial
to enable a fast feedback loop for developers to
assess whether their changes have broken other

parts of the system. There are significant caveats in the process that often lead to more
problems as they delay the feedback loop from automated testing back to the developers
that should be relatively rapid.

The common stumbling block around this area is when automated tests become unwieldy
and slow which deteriorates the feedback loop. This typically occurs when the test
distribution errors from the typical pyramid style approach.

| 1 0

The pyramid represents how the fastest type of tests should be the most and the slowest the
fewest. Simply because software is rarely stale and it grows and evolves with iterations as
does testing.

This leads to complexity growth in the testing phase, and in worst case scenario tests will
become unmanageable and take days to run.

The constant change of software and the tests
around it can be considered as entropy, “lack of
order or predictability; gradual decline into
disorder”, that slowly creeps into software and
must be managed via refactoring and general
code maintenance, or else both the software and
the tests fall into disorder.

This is especially true in the modern age as in the
past we had physical buttons, punch cards and
paper outputs of our functions that nowadays are
only found in museums. Following the transition
to command line, the rise of graphical user
interface slowly occurred and we gained the
slowest type of tests on top of the pyramid.

THE PYRAMID STYLE APPROACH

5
C H A P T E R

THE HUMAN EXPERIENCE

| 1 1

THE HUMAN
EXPERIENCE

| 1 2

Another layer of complexity is added to quality since we need to consider the user
experience (UX) with modern software as well. This is something that is very subjective to
the user and automating something so human seems near impossible. The human testers,
however, can assess usability from various aspects while doing a variety of exploratory
testing.

Indeed an easy example of why this more human type of testing can be so efficient is how
humans were able to solve protein folding problems that super computers were struggling to
solve, for “That’s no small task, considering that even a moderately sized protein can
theoretically fold into more possible shapes than there are particles in the universe.”

 SOURCE:
Bohannon, John. “Video Game Helps Solve Protein Structures.” Science,

https://www.science.org/content/article/video-game-helps-solve-protein-structures.

Exploratory testing, or chaos engineering as Netflix likes to call it, is an integral part of
testing. Automated testing is an excellent tool for working as a safety net and a feedback
loop, but in the insurmountable complexity of modern software and how it is almost always
interconnected to various other facets, we do require a more “human” approach to control
the quality as well.

The same level of complexity, or even more so, applies to the software we are testing, and
therefore a few inquisitive and capable humans can in some ways outdo super computers in
the ability to detect issues in software.

https://www.google.com/url?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FExploratory_testing&sa=D&sntz=1&usg=AOvVaw0UVJNYHVK6I1Y2Gy53fPh9
https://www.google.com/url?q=https%3A%2F%2Fwww.science.org%2Fcontent%2Farticle%2Fvideo-game-helps-solve-protein-structures&sa=D&sntz=1&usg=AOvVaw0taVTGVQxOmCmKcW5KN3Um
https://www.google.com/url?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FChaos_engineering&sa=D&sntz=1&usg=AOvVaw1vww5nGUlYpxmxvzJ_UVPD

| 1 3

Once we move past the technical aspects of testing, we ought to examine a more
philosophical testing aspect that is rarely, if ever, considered but is in fact equally
important.

Consider the VW emission testing defeating software that lead to the Volkswagen emissions
scandal.

“The agency had found that Volkswagen had intentionally programmed turbocharged direct
injection (TDI) diesel engines to activate their emissions controls only during laboratory
emissions testing, which caused the vehicles’
NOx output to meet US standards during regulatory testing. However, the vehicles emitted
up to 40 times more
NOx in real-world driving. Volkswagen deployed this software in about 11 million cars
worldwide, including 500,000 in the United States, in model years 2009 through 2015.”

SOURCES:
"EPA, California Notify Volkswagen of Clean Air Act Violations / Carmaker allegedly used software that

circumvents emissions testing for certain air pollutants". US: EPA. 18 September 2015. Archived from the
original on 2 March 2017. Retrieved 1 July 2016.

Jordans, Frank (21 September 2015). "EPA: Volkswagon [sic] Thwarted Pollution Regulations For 7 Years".

CBS Detroit. Associated Press. Retrieved 24 September 2015.

"Abgasaffäre: VW-Chef Müller spricht von historischer Krise". Der Spiegel. Reuters. 28 September 2015.
Retrieved 28 September 2015.

Ewing, Jack (22 September 2015). "Volkswagen Says 11 Million Cars Worldwide Are Affected in Diesel

Deception". The New York Times. Retrieved 22 September 2015.

ETHICAL IMPLICATIONS

https://www.google.com/url?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FVolkswagen_emissions_scandal&sa=D&sntz=1&usg=AOvVaw0AP_KBwRnb8y4OpxJto-Hu

This software embedded to the cars could have been the best software with no bugs, but
was it good quality? Definition of quality:

“the standard of something as measured against other things of a similar kind;
the degree of excellence of something”
“a distinctive attribute or characteristic possessed by someone or something”

 SOURCE: GOOGLE OXFORD LANGUAGES

One could argue the final hurdle for testing is to assess moral and ethical implications of
the software and its quality. If VW emissions defeating software was perfect technically, it
surely lacked the moral and ethical grounds to be called good quality or to pass testing
without raising significant amount of questions.

| 1 4

S U M M A R Y

| 1 5

Teemu Ruuskanen
Contractor Senior Exploratory Tester

AUTHOR

In the last 100 years we have gone from machines with physical gears and cogs to
having supercomputers in our pockets with access to most of human information
within our fingertips. This leap in computer technology has come with the side
effect of ever increasing complexity in software. We have reached a point where a

single person is unlikely to fully grasp how a
piece of software works, hence the need for
validation is paramount. Integrating testing to
the flow of development is important but one
should not forget the more human side of
testing and its implications in the context of
quality.

